节点文献
基于RBF神经网络的AOA定位算法
AOA location algorithm based on RBF neural network
【摘要】 基于几何结构的单次反射统计信道模型,提出了基于RBF神经网络的AOA定位算法。应用RBF神经网络对非视距传播(NLOS)误差进行修正,然后利用最小二乘(LS)算法进行定位。仿真结果表明:该算法减小了NLOS传播的影响,提高了系统的定位精度,性能优于LS算法。
【Abstract】 According Geometrically Based Single-Bounced (GBSB) statistical model, an Angle Of Arrival (AOA) location algorithm based on RBF neural network was proposed. The RBF neural network was used to correct the error of Non-Line-Of-Sight (NLOS)propagation, then the position was calculated by Least-Square algorithm (LS). The simulation results indicate that the location accuracy is significantly improved and the performance of this algorithm is better than that of LS algorithm.
【关键词】 电波到达角;
非视距传播;
最小二乘法;
神经网络;
【Key words】 Angle Of Arrival (AOA); Non-Line-Of-Sight (NLOS); Least Squares algorithm (LS); neural network;
【Key words】 Angle Of Arrival (AOA); Non-Line-Of-Sight (NLOS); Least Squares algorithm (LS); neural network;
【基金】 陕西省自然科学基金资助项目(2004F12)
- 【文献出处】 计算机应用 ,Journal of Computer Applications , 编辑部邮箱 ,2008年01期
- 【分类号】TP183;TN929.5
- 【被引频次】20
- 【下载频次】477