节点文献

异常天气条件下潮位过程神经网络补遗预测方法的研究

Research on tide supplemental prediction using ANN methods under unusual weather

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李明昌梁书秀孙昭晨

【Author】 LI Ming-chang,LIANG Shu-xiu,SUN Zhao-chen (The State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China)

【机构】 大连理工大学海岸和近海工程国家重点实验室大连理工大学海岸和近海工程国家重点实验室 辽宁大连116024辽宁大连116024

【摘要】 以异常天气条件下的实测潮位过程为研究对象,根据其为非平稳时间序列的特点,以人工神经网络BP算法作为预测工具,对潮位时间序列中缺失的数据进行补遗建立:差分方法人工神经网络模型;同一海域邻近潮汐测站潮位过程对应预测的去平均值法人工神经网络模型;对增减水现象潮汐过程预测的气象资料数据库人工神经网络模型。以实测资料验证上述方法的可行性,并取得了很好的预测结果。

【Abstract】 Based on BP algorithm and the nonstationary characteristics of tidal field data under unusual weather,this paper presents three artificial neural network models: Difference artificial neural networks model for supplement forecasting;Minus-mean artificial neural networks model for corresponding forecasting between different tidal gauge stations;Weather database artificial neural networks model for setup and setdown.The numerical results show that these models perform well for tidal field data supplemental forecasting.

【基金】 国家自然科学基金(50509005);辽宁省自然科学基金(20032115)资助项目
  • 【文献出处】 计算力学学报 ,Chinese Journal of Computational Mechanics , 编辑部邮箱 ,2008年03期
  • 【分类号】P731.23
  • 【被引频次】4
  • 【下载频次】173
节点文献中: 

本文链接的文献网络图示:

本文的引文网络