节点文献

模糊深隐马尔可夫模型研究

Research on Fuzzy Buried Markov Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 成科扬文传军詹永照

【Author】 CHENG Ke-yang WEN Chuan-jun ZHAN Yong-zhao(School of Computer Science and Telecommunications Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China)

【机构】 江苏大学计算机学院江苏大学计算机学院 镇江212013镇江212013

【摘要】 针对经典马尔可夫模型没有考虑模型应用中状态、观测量间的上下文相关性以及状态转移概率动态性、可变性,提出一种模糊深隐马尔可夫模型。该模型通过增加观测值间的相关性、解决概率转移问题中的不确定性和改进参数优化算法,使之能够较好地应用于强噪声、训练数据缺损等情形的模式识别中。理论证明,显式模糊深隐马尔可夫模型在同等模型复杂度下具有模型优化程度高、区分度好、误识率低、鲁棒性高的特性。

【Abstract】 To avoid the disadvantage of hidden Markov model which doesn’t consider the contextual relevant relationship of states and observations and the changeability of transfer probability, an improved model called fuzzy buried Markov model is put forward in this paper. Adding relationship among the different observations, resolving the problem of transfer probability uncertainty and ameliorating the parameter optimization arithmetic make the novel model be suitable to apply in pattern identification with much noise and losing of some training data. Compared with other model of the same complexity, fuzzy buried Markov model shows more good character such as optimum performance, better division degree, lower error rate and lustihood, which can be proved by graphical theory.

【基金】 国家自然科学基金资助项目(60673190)
  • 【文献出处】 计算机科学 ,Computer Science , 编辑部邮箱 ,2008年06期
  • 【分类号】TP18
  • 【被引频次】6
  • 【下载频次】180
节点文献中: 

本文链接的文献网络图示:

本文的引文网络