节点文献
基于排序向量内积的关联规则挖掘算法
Association rule algorithm based on order vectors inner product
【摘要】 关联规则发现是数据挖掘中的重要研究课题之一。将挖掘的数据事务集压缩到一个布尔型向量矩阵中,只需扫描数据库一次,合理利用数据存储结构,且不会产生大量的候选集。实验表明,该算法不仅实现简单,与经典的Apriori算法进行相比,效率也有大幅提高,特别对大事务集、长项目集数据挖掘效果更为明显。
【Abstract】 Association rules discovery is an important research topic in data mining.The article will mine Data-Item set compression to a Boolean Vector Matrix.The algorithm only needs to scan the database one time and rational use of data storage structure so that it would not generate a large number of candidate sets.Experiment results indicate that the algorithm is not only simple,but also has good efficiency compared with the Apriori algorithm.When you mine a large database and long item-set,the mining effect of this way is more visible than the Apriori algorithm.
【关键词】 数据挖掘;
关联规则;
频繁项集;
向量内积;
【Key words】 data mining; association rule; frequent item set; vector inner product;
【Key words】 data mining; association rule; frequent item set; vector inner product;
【基金】 安徽省级自然科学研究项目(No.KJ2008A35ZC)
- 【文献出处】 计算机工程与应用 ,Computer Engineering and Applications , 编辑部邮箱 ,2008年26期
- 【分类号】TP311.13
- 【被引频次】5
- 【下载频次】109