节点文献

Fabrication of atomically smooth SrRuO3 thin films by laser molecular beam epitaxy

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【Author】 LIU GuoZhen1, HE Meng1, JIN KuiJuan1, YANG GuoZhen1, Lü HuiBin1, ZHAO Kun2, ZHENG ShiJian3 & MA XiuLiang3 1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China; 2 Department of Mathematics and Physics, China University of Petroleum, Beijing 102249, China; 3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

【摘要】 High-quality SrRuO3 (SRO) thin films and SrTiO3/SRO bilayer were grown epitaxially on SrTiO3 (STO)(001) substrates by laser molecular beam epitaxy. The results of in situ observation of reflection high-energy electron diffraction and ex situ X-ray diffraction θ -2θ scan indicate that the SRO thin films have good crystallinity. The measurements of atomic force microscopy and scan tunneling microscopy reveal that the surface of the SRO thin film is atomically smooth. The resistivity of the SRO thin film is 300 μΩ·cm at room temperature. Furthermore, the transmission electron microscopy study shows that the interfaces of STO/SRO and SRO/STO are very clear and no interfacial reaction layer was observed. The experimental results show that the SRO thin film is an excellent electrode material for devices based on perovskite oxide materials.

【Abstract】 High-quality SrRuO3 (SRO) thin films and SrTiO3/SRO bilayer were grown epitaxially on SrTiO3 (STO)(001) substrates by laser molecular beam epitaxy. The results of in situ observation of reflection high-energy electron diffraction and ex situ X-ray diffraction θ -2θ scan indicate that the SRO thin films have good crystallinity. The measurements of atomic force microscopy and scan tunneling microscopy reveal that the surface of the SRO thin film is atomically smooth. The resistivity of the SRO thin film is 300 μΩ ·cm at room temperature. Furthermore, the transmission electron microscopy study shows that the interfaces of STO/SRO and SRO/STO are very clear and no interfacial reaction layer was observed. The experimental results show that the SRO thin film is an excellent electrode material for devices based on perovskite oxide materials.

【基金】 the National Natural Science Foundation of China (Grant No. 10334070)
  • 【文献出处】 Science in China(Series G:Physics,Mechanics & Astronomy) ,中国科学(G辑:物理学 力学 天文学)(英文版) , 编辑部邮箱 ,2008年07期
  • 【分类号】O484.1
  • 【被引频次】1
  • 【下载频次】43
节点文献中: 

本文链接的文献网络图示:

本文的引文网络