节点文献
关于半质环的几个交换性条件
Some commutativity conditions for semi-prime rings
【摘要】 设R为结合环,Z(R)为其中心。证明了:设R为半质环,a∈R,2a为非零因子,正整数n=n(x,y)及M,其中1<n=n(x,y)≤M.如果x,y∈R有依赖于x,y的多项式fxy(X,Y)∈A[X,Y]使得[fxy(x,a),yn]∈Z(R),则R为交换环。推广了文献[1-4]中的结果,得到更广泛的交换性条件。
【Abstract】 Suppose R is an associative ring,Z(R) is its center. It is shown that: Suppose R is a semi-prime ring, a∈R, and 2a is not zero-divisor, n=n(x,y) and M are positive integers with 1<n=n(x,y)≤M. If for every x,y∈R, there is a polynomial fxy(X,Y)∈A[X,Y]such that [fxy(x,a),yn]∈Z(R), then R is called a commutative ring. The results of documents [1-4] are extended and more extensive commutativity conditions of the semi-prime ring are obtained.
【基金】 黑龙江省教育厅科研项目(10551283);黑龙江科技学院引进人才科研启动基金项目(04-25)
- 【文献出处】 黑龙江大学自然科学学报 ,Journal of Natural Science of Heilongjiang University , 编辑部邮箱 ,2008年04期
- 【分类号】O153.3
- 【被引频次】4
- 【下载频次】77