节点文献

基于不完备损伤指标和遗传算法的特大桥损伤识别和传感器布点优化

DAMAGE DETECTION AND OPTIMUM SENSOR LOCALIZATION BASED ON INCOMPLETE DAMAGE INDEXES AND GENETIC ALGORITHMS FOR LONG-SPAN BRIDGES

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 黄朝俊贺瑞秦权

【Author】 HUANG Chao-jun1 , HE Rui1 , QIN Quan1,2 (1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China; 2. Bridge Technology Company, China Communication Construction Corporation, Beijng 100102, China)

【机构】 清华大学土木工程系中国交通建设集团桥梁技术公司

【摘要】 特大桥健康监测系统不可能在所有自由度安放传感器,该文讨论了用由不完备振型建立的损伤指标的损伤识别和传感器布点优化方法。与过去用遗传算法优化传感器布点的适应度函数不同,该文用损伤指标最灵敏来建立适应度函数。对桥梁的单个损伤,该文用不完备模态柔度矩阵差和截断模态应变能变化率两个不完备损伤指标作为适应度函数来优化传感器布点,并与传统的COMAC指标对比,还改进了多种群遗传算法,以提高收敛速度和全局寻优能力。并以西堠门悬索桥有限元模型为例,识别不同部位的损伤。算例表明:该方法在损伤识别和传感器布点优化方面不仅可行而且有效。

【Abstract】 The methods for damage detection and optimum sensor localization with the incomplete damage indexes based on the incomplete mode shapes are developed, and the multi-species genetic algorithms for the structural health monitoring system of long-span bridges are improved. Two incomplete damage indexes, the difference in the incomplete mode flexibility matrixes, and the change ratio in the truncated mode strain energies, are developed as the fitness parameters in comparison with traditional COMAC. The modified multi-species genetic algorithms combine the advantages of general genetic algorithms and multi-species genetic algorithms, and are better in convergence and global optimization. The FE model of Xihoumen suspension bridge is used as an example for damage detection and optimum sensor localization. The results show the methods are feasible and effective.

【基金】 国家重点基础研究发展规划(973)项目“灾害环境下重大工程安全性的基础研究”子课题(2002CB4127009)
  • 【文献出处】 工程力学 ,Engineering Mechanics , 编辑部邮箱 ,2008年12期
  • 【分类号】TP274.4;U441.4
  • 【被引频次】19
  • 【下载频次】432
节点文献中: 

本文链接的文献网络图示:

本文的引文网络