节点文献
基于免疫的RBF网络在线学习算法研究
A new on-line training algorithm of RBF network based on the immunity
【摘要】 提出一种新的基于免疫的RBF网络在线算法.首先是融入增加结点策略和减少结点策略,把传统的免疫RBF网络算法改进成在线学习算法.其次是改进了权值学习算法,径向基函数相当于这一类的概率密度,隐层到输出层权值相当于这一类的值.用这种方法权值不需要训练.试验结果表明,该方法效果理想、速度快,识别率高.
【Abstract】 Put forward a new network of RBF of based on the immunity,which is a on-line algorithm.The first is adding strategy and remarkable degree based on the output of radial basis function which is a pruning strategy.The second is improval of the weight value study algorithm.radial basis function is equal to probability of this type,weight is equal to value of this type.Weight doesn’t need to train.Experiment results show that this method is ideal,speed is quick,and detection rate is high.
【基金】 国家自然科学基金资助项目(60675058);福建省自然科学基金资助项目(A0610013,A0710008)
- 【文献出处】 福州大学学报(自然科学版) ,Journal of Fuzhou University(Natural Science Edition) , 编辑部邮箱 ,2008年S1期
- 【分类号】TP183
- 【被引频次】3
- 【下载频次】114