节点文献

一种面向物流数据分析的路径序列挖掘算法ImGSP

ImGSP:a path sequence mining algorithm for product flow analysis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 胡孔法张长海陈崚达庆利

【Author】 Hu Kongfa1,2 Zhang Changhai2 Chen Ling2 Da Qingli1,2(1 School of Economics and Management,Southeast University,Nanjing 210096,China)(2College of Information Engineering,Yangzhou University,Yangzhou 225009,China)

【机构】 东南大学经济管理学院扬州大学信息工程学院

【摘要】 为了有效地挖掘物流管理系统中的物流频繁路径序列模式,提出了一种针对物流数据分析的路径序列挖掘算法ImGSP算法.ImGSP算法通过对原始路径数据库筛选,选出路径序列长度大于或等于候选序列长度的路径序列,有针对性地产生过度候选序列,来约减候选序列.实验结果表明:ImGSP算法能够有效地减少候选序列数量,生成频繁路径序列模式,进而产生物流中有用的规则.该方法不仅缩小了扫描数据库的规模,而且减少了生成频繁序列的候选序列集合.

【Abstract】 Currently the data in logistic system is very huge,so the efficiency of mining frequent path sequences needs to be improved.Therefore,an efficient algorithm-ImGSP(improved generalized sequential patterns)for analyzing logistic data is presented.In this method the original database is screened to find the path sequences that is greater than or equal to the candidate sequences in the length,and then generate the candidate sequences through generating the transitional candidate sequences.The experiment results show that the ImGSP algorithm can effectively generate frequent patterns by reducing the volume of sequences,and then find the valuable rules.The method not only reduces the size of scanning database but also reduces the candidate sequences set.

【基金】 国家自然科学基金资助项目(60773103,60673060,70772059);中国博士后科学基金资助项目(20070420954);江苏省“青蓝工程”基金资助项目.
  • 【文献出处】 东南大学学报(自然科学版) ,Journal of Southeast University(Natural Science Edition) , 编辑部邮箱 ,2008年06期
  • 【分类号】TP311.13
  • 【被引频次】14
  • 【下载频次】343
节点文献中: 

本文链接的文献网络图示:

本文的引文网络