节点文献

一种基于实例的文本图像超分辨率重建算法

Algorithm for document image super-resolution reconstruction based on examples

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨浩安国成陈向东吴镇扬

【Author】 Yang Hao1 An Guocheng1 Chen Xiangdong2 Wu Zhenyang1(1School of Information Science and Engineering,Southeast University,Nanjing 210096,China)(2Department of Information Engineering,Huanghuai University,Zhumadian 463000,China)

【机构】 东南大学信息科学与工程学院黄淮学院信息工程系东南大学信息科学与工程学院 南京210096南京210096驻马店463000

【摘要】 为了从一幅包含文字、公式和图形等内容的低分辨率文本图像重建高分辨率图像,提出了一种获取重建图像先验知识的新方法.利用实例图像和图像降质模型建立图像库,图像重建时,将低分辨率观测图像分成若干子块,每个子块分别从图像库中找到一块最佳匹配的高分辨率实例图像块,将这些实例图像块依次拼成一幅大图,并把该大图各点的灰度值作为重建图像各点灰度值的均值,以此先验知识采用最大后验概率(MAP)准则估计出高分辨率文本图像.实验结果表明本文的方法能够取得较好的重建效果.

【Abstract】 In order to produce a high-resolution image from a low-resolution document image containing characters,equations and graphics,a new method to obtain the prior knowledge of the high-resolution image is proposed.Image examples and degradation model are used to generate example image database.A high-quality patch is assigned to each block in the observed low-resolution image,whose corresponding low-quality patch is found as the nearest neighbor in the image database.These high-quality patches are mosaicked to produce an enlarged image whose pixel intensities are taken as the mean values of the pixel intensities of the desired high-resolution image.A maximum a posteriori(MAP) estimator is used to estimate the high-resolution image.Experimental results show that the new method improves the reconstruction results significantly.

【基金】 国家自然科学基金资助项目(60672094).
  • 【文献出处】 东南大学学报(自然科学版) ,Journal of Southeast University(Natural Science Edition) , 编辑部邮箱 ,2008年02期
  • 【分类号】TP391.41
  • 【被引频次】17
  • 【下载频次】331
节点文献中: 

本文链接的文献网络图示:

本文的引文网络