节点文献

奇异离散一阶周期系统的多重非负解

Multiplicity of nonnegative solutions to frist order singular discrete periodic systems

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 胡卫敏张丽娟

【Author】 HU Wei-min1,ZHANG Li-juan2(1.Department of Mathematics,Yili Normal College,Yining 835000,China;2.Department of Mathematics,Baicheng Normal College,Baicheng 137000,China)

【机构】 伊犁师范学院数学系白城师范学院数学系 新疆伊宁835000吉林白城137000

【摘要】 研究了奇异离散一阶周期系统{Δx(i)=x(i)[a1(i)-f1(i,x(i),y(i))],Δy(i)=y(i)[a2(i)-f2(i,x(i),y(i))],ak(i+T)=ak(i),fk(i+T,x,y)=fk(i,x,y),i∈(-∞,+∞),k=1,2;T>0的多重非负解的存在性,其中非线性项fk(i,x,y)(k=1,2)在点(x,y)=(0,0)处具有奇性.并利用锥不动点定理证明了在适当的条件下这个问题至少存在两个解.

【Abstract】 This paper is devote to establish the multiplicity of nonnegative solutions to first order singular discrete periodic systems{Δx(i)=x(i)[a1(i)-f1(i,x(i),y(i))],Δy(i)=y(i)[a2(i)-f2(i,x(i),y(i))],ak(i+T)=ak(i),fk(i+T,x,y)=fk(i,x,y),i∈(-∞,+∞),k=1,2;T>0 where the nonlinear term fk(i,x,y)(k=1,2) may be singular at(x,y)=(0,0).It is proved that such a problem has at least two nonnegative T-periodic solutions by using fixed point theorem in cones under our reasonable conditions.

【基金】 国家自然科学基金资助项目(10571021)
  • 【文献出处】 东北师大学报(自然科学版) ,Journal of Northeast Normal University(Natural Science Edition) , 编辑部邮箱 ,2008年02期
  • 【分类号】O177.91
  • 【被引频次】3
  • 【下载频次】32
节点文献中: 

本文链接的文献网络图示:

本文的引文网络