节点文献

基于分叉树和SVM的人脸图像光照方向估计

Illumination Direction Estimation in Face Recognition Based on Bifurcate Tree and SVM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 孙雪梅苏菲蔡安妮

【Author】 SUN Xue-mei,SU Fei,CAI An-ni(School of Telecommunication Engineering,Beijing University of Posts and Telecommunications,Beijing 100086)

【机构】 北京邮电大学电信工程学院多媒体通信与生物特征识别实验室北京邮电大学电信工程学院多媒体通信与生物特征识别实验室 北京100086北京100086

【摘要】 根据人脸识别中光照方向类别多,类与类之间特征不明显,不易分类的问题,提出了采用SVM分类方法解决人脸识别中复杂的、非线性光照方向分类问题。用分叉树将复杂分类变成每级分类,并保证在4类以内的分类方法;同时在各级分类中,根据当前分类的类别特点,提取当前要处理的分类之间的明显特征作为特征进行分类;另外,给出了最优的SVM分类器的训练和构造过程。实验结果表明,该方法对解决分类特征不易于提取,类别数目多的分类问题有明显效果,分类准确率达到89.16%。

【Abstract】 To solve the complex and nonlinear illumination direction classification problem in face recognition,a method based on bifurcate tree and SVM is proposed in this paper.Before using the SVM,light directions are firstly sorted into a bifurcate tree according to its intrinsic intensity distribution which assure that only a few classes are sorted at every branch.Moreover,different features are extracted for SVM at the different levels according to the lighting characteristics of the corresponding levels.Experiment results show that the proposed method is efficient to solve multi-classes classification problem and the accuracy can be achieved to 89.16%.

【关键词】 分叉树SVM光照方向人脸识别非线性
【Key words】 SVMillumination directionface recognition
【基金】 国家自然基金资助项目(60472069)
  • 【文献出处】 中国图象图形学报 ,Journal of Image and Graphics , 编辑部邮箱 ,2007年10期
  • 【分类号】TP391.41
  • 【被引频次】7
  • 【下载频次】194
节点文献中: 

本文链接的文献网络图示:

本文的引文网络