节点文献
自适应调整α,β参数的蚁群算法
Adaptive ant colony algorithm of adjusting parameters α,β
【摘要】 为了提高基本蚁群算法的全局求解能力,对基本蚁群算法进行了改进,提出了一种通过自适性改变启发式因子α和β期望启发式因子的蚁群算法。当连续几代进化后的最优解没有明显变化时,改进后的算法通过对启发式因子α和期望启发式因子的β自适应调整来提高最优解的求解质量。通过对TSP问题的仿真表明,改进后的蚁群算法在求解最优解和收敛性能方面比起基本蚁群算法存在优势。
【Abstract】 In order to improve the global ability of basic ACA(ant colony algorithm),a novel ACA algorithm which is an improved al-gorithm based on adaptively adjusting parameter α,β is proposed.When best solution has not changed after several generations,the novel ACA algorithm adaptively adjusts the parameter α,β to improve the global ability of the solution.The simulations for TSP problem show that the improved ACA algorithm can find better best solution and have better convergence than basic ACA.
【关键词】 蚁群算法;
自适应;
启发式因子;
期望启发式因子;
旅行商问题;
【Key words】 ant colony algorithm; adaptive; heuristic value; expected heuristic value; TSP;
【Key words】 ant colony algorithm; adaptive; heuristic value; expected heuristic value; TSP;
- 【文献出处】 计算机工程与设计 ,Computer Engineering and Design , 编辑部邮箱 ,2007年20期
- 【分类号】TP301.6
- 【被引频次】13
- 【下载频次】404