节点文献

基于量化扩展概念格的属性归纳算法

Attribute-Oriented Induction Algorithm Based on Quantitative Extended Concept Lattice

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王德兴胡学钢刘晓平黄冬梅

【Author】 WANG De-Xing~(1,2),HU Xue-Gang~1,LIU Xiao-Ping~1,HUANG Dong-Mei~2~1(Department of Computer Science and Technology,He fei University ofTechnology,Hefei 230009)~2(College of Information Technology,Shanghai Fisheries University,Shanghai 200090)

【机构】 合肥工业大学计算机与信息学院上海水产大学信息技术学院

【摘要】 在知识发现过程中用户感兴趣的往往是一些高层次、适当概括的简化信息,面向属性的归纳是目前主要的数据归约方法,一般是仅考虑原始数据所提供简单的统计信息.本文提出的基于量化扩展概念格的属性归纳算法,采用概念的爬升进行相应的泛化来完成多层、多属性归纳.与面向属性归纳算法比较,该算法的泛化路径不是唯一的,在量化扩展概念格的哈斯图中容易找到合适的泛化路径和阈值,得到满足用户要求合理的属性归纳结果,以提供用户所需的不同粒度的知识.

【Abstract】 In knowledge discovery in databases(KDD),users show much interest in high-level,general and reductive information.Attribute oriented induction(AOI),which generally takes the statistical information from original data into account,has been commonly used in data reduction. However,attribute-oriented algorithm based on quantitative concept lattice can finish induction with multi-level and multi-attribute by using concept ascension according to the Hasse diagram of the quantitative extended concept lattice.Compared with AOI,the generalization path of the proposed algorithm is not unique.The proper generalization paths and thresholds on the Hasse diagram of quantitative extended concept lattice could be found easily.The required reasonable results are gotten,and different granular knowledge is provided for users.

【基金】 国家自然科学基金(No.60673028);国家863计划项目(No.2006AA102239—1);安徽省自然科学基金项目(No.050420207);上海市教育委员会科研创新基金项目(No.08YZ120)
  • 【文献出处】 模式识别与人工智能 ,Pattern Recognition and Artificial Intelligence , 编辑部邮箱 ,2007年06期
  • 【分类号】TP311.13;TP18
  • 【被引频次】5
  • 【下载频次】106
节点文献中: 

本文链接的文献网络图示:

本文的引文网络