节点文献
一种模糊支持向量的负荷混沌时间序列预测法
Chaotic Time Series Method for Load Forecasting Based on Fuzzy Support Vector
【摘要】 根据电网负荷混沌性的特点,提出一种基于模糊支持向量的核回归方法进行电力系统的负荷预测。同时提出多参数同步优化策略,增强了该方法的实用性和有效性。从理论上分析了小样本条件下,可以有效避免过学习的原因,该方法不需设计网络结构,降低了对实验人员经验的依赖程度。选取实际负荷时间序列数据,通过与神经网络法进行对比实验,结果显示出该方法的优越性和适用性,具有较好的实用价值和应用前景。
【Abstract】 According to the chaotic characteristic of power load,fuzzy support vector based kernel regression method is proposed for load forecasting.Then,multi-parameter synchronous optimization strategy is presented to speed up the optimization process.Case study shows that the method has lower error and can avoid over-fitting effectively,which is better than conventional neural network method.It is of great value for engineering application.
【关键词】 模糊支持向量;
混沌;
负荷预测;
多参数同步优化;
【Key words】 fuzzy support vector; chaos; load forcasting; multi-parameter synchronous optimization;
【Key words】 fuzzy support vector; chaos; load forcasting; multi-parameter synchronous optimization;
- 【文献出处】 电力系统及其自动化学报 ,Proceedings of the Chinese Society of Universities for Electric Power System and Automation , 编辑部邮箱 ,2007年06期
- 【分类号】TM715
- 【被引频次】5
- 【下载频次】286