节点文献

基于小波变换和模糊神经网络的运动员投掷力信息识别方法

Recognition Method of Throwing Force of Athlete Based on Wavelet & FNN

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 马静华葛运建雷建和

【Author】 Ma Jinghua~ 1, 2 Ge Yunjian~1 Lei Jianhe~ 1,2 (1.Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China 2.Dep. of Automation, University of Science and Technology of China, Hefei 230026, China)

【机构】 中国科学院合肥智能机械研究所

【摘要】 在详细分析滑步式投掷铅球动作特性的基础上,设计了一种有效结合小波变换和模糊神经网络的运动员投掷力信息识别新方法。利用小波分解与重构的方法对信号进行了去噪处理,并采用小波系数的能量值作为运动员投掷力曲线的特征,将特征向量作为模糊神经网络的输入,对运动员投掷力曲线进行识别。经过比较实验验证,该算法既降低了噪声的影响,又在有效提取特征的同时减少了神经网络的运算量,提高了识别速度,具有较高的识别精度。

【Abstract】 A novel method for recognition of athlete’s throwing force is introduced in the paper, which is based on the motion analysis of gliding shot putting and combines the algorithms of wavelet transform and FNN. Using the wavelet decomposition and reconstruction method, the noise is restrained efficiently. In order to identify the throwing force curves of different motion phases, the signal features are extracted using wavelet transform method. The energy values of wavelet coefficients are chosen as signal features and then input into the FNN for recognition. The experiment shows that the method has high anti-noise ability. It not only extracts the features efficiently, but also decreases the burden of neural network. Therefore, the recognition speed is increased and recognition efficiency of neural network is improved.

【基金】 国家自然科学基金资助项目(编号:60343006,60505012)。
  • 【文献出处】 电子测量与仪器学报 ,Journal of Electronic Measurement and Instrument , 编辑部邮箱 ,2006年05期
  • 【分类号】G824.1;TP183
  • 【被引频次】4
  • 【下载频次】90
节点文献中: 

本文链接的文献网络图示:

本文的引文网络