节点文献

利用独立成分分析实现成组的fMRI信号的盲分离

Blind source separation for group fMRI signals using independent component analysis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张伟伟史振威阎芬唐焕文唐一源

【Author】 ZHANG Wei-wei~(1,2), SHI Zhen-wei~(1,2), YAN Fen~2, TANG Huan-wen~1, TANG Yi-yuan~(2,3*)(1.Institute of Computational Biology and Bioinformatics, Dalian University of Technology, Dalian 116023; 2.Institute of Neuroinformatics, Dalian University of Technology, Dalian 116023, China;3.Institute of Biophysics, the Chinese Academy of Sciences, Beijing 100101, China)

【机构】 大连理工大学计算生物学和生物信息学研究所大连理工大学神经信息学研究所大连理工大学神经信息学研究所 辽宁大连116023大连理工大学神经信息学研究所辽宁大连116023辽宁大连116023大连理工大学神经信息学研究所辽宁大连116023中国科学院生物物理研究所北京100101

【摘要】 独立成分分析(ICA)作为盲源分离的一种有效方法已经被成功的用于处理功能磁共振成像(fMRI)数据,但是通常人们只是考虑处理单个被试的数据,对于多个被试的情况却很少有人考虑,本文中分析了目前国际上比较流行的三种用 ICA来处理多个被试的 fMRI数据的方法,并且利用其中最好的一种方法对我们实验中获得的 fMRI数据进行处理,结果表明这种方法可以快速有效地处理多个被试的 fMRI数据。

【Abstract】 Independent component analysis (ICA) has been used for processing the functional magnetic resonance imaging (fMRI) data as an effective method of blind source separation, but usually we just analyze the data from one subject, rarely from a group of subjects. In this article we analyzed three popular methods about performing an ICA analysis on a group of subjects. And we used the best method to process the fMRI data from our experiment, the results showed that this method can analyze the fMRI data from a group of subjects fast and effectively.

【基金】 科技部国际合作(DF2003);教育部(KP0302);国家自然科学基金(60472017)支持
  • 【文献出处】 中国医学影像技术 ,Chinese Journal of Medical Imaging Technology , 编辑部邮箱 ,2005年03期
  • 【分类号】R310
  • 【被引频次】11
  • 【下载频次】217
节点文献中: 

本文链接的文献网络图示:

本文的引文网络