节点文献

基于神经网络的热轧带钢卷取温度预测

Prediction of Coiling Temperature of Hot Rolled Strip Based on Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王益群王海芳孙旭光高英杰张伟朱丹丹

【Author】 Wang Yiqun Wang Haifang Sun Xuguang Gao Yingjie Zhang Wei Zhu Dandan Yanshan University, Qinhuangdao,066004

【机构】 燕山大学燕山大学 秦皇岛066004秦皇岛066004

【摘要】 热轧带钢卷取温度是影响成品带钢性能指标的重要工艺参数之一,其层流控制系统具有高度的非线性。采用附加动量BP算法,建立了基于神经网络前馈与数学模型反馈的联合层流控制系统,仿真结果表明,采用神经网络预测的卷取温度与实测温度相近,结果可信,为层流数学模型参数的在线辨识打下了坚实的基础。

【Abstract】 Hot strip coiling temperature is one of the important parameters of performance index in hot rolled strip, and its control systems of highly nonlinearity. The coiling temperature of hot rolled strip is exactly predicted based on neural network (NN) and an improved BP algorithm.A new coiling temperature system based on NN combined with mathematical model was presented,where the feed-forward control was based on the NN and the feed-backward control was based on mathematic model. Finally, the prediction by the NN shows that the control performance is satisfactory, and it can make mathematical model of coiling temperature identified.

【基金】 河北省自然科学基金资助项目(E2004000221)
  • 【文献出处】 中国机械工程 ,China Mechanical Engineering(中国机械工程) , 编辑部邮箱 ,2005年11期
  • 【分类号】TG335.11
  • 【被引频次】9
  • 【下载频次】185
节点文献中: 

本文链接的文献网络图示:

本文的引文网络