节点文献

基于多元统计过程控制的故障识别方法

New fault recognition method based on multivariate statistical process control

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 唐凯刘瑞兰苏宏业褚健

【Author】 TANG Kai, LIU Rui-lan, SU Hong-ye, CHU Jian (National Key Laboratory of Industrial Control Technology, Institute of Advanced Process Control, Zhejiang University, Hangzhou 310027, China)

【机构】 浙江大学先进控制研究所浙江大学先进控制研究所 工业控制技术国家重点实验室浙江杭州310027工业控制技术国家重点实验室浙江杭州310027

【摘要】 通过简化多维正态分布计算各工业变量导致采样点异常的概率,依据此概率结合对工业过程的分析,实现故障源的有效识别.证明了待求多维正态分布概率落在等马氏距离边界内,利用这一结论及多元统计学原理将复杂的多维正态分布转化为F分布,解决了多维正态分布求解难的问题.仿真结果表明了这种基于多元统计过程控制(MSPC)的新方法的有效性和准确性.

【Abstract】 By simplifying the multivariate normal distribution, the probability of each industrial variable making the sample abnormal was computed. According to the probability and the analysis of the industrial process, the fault origin was efficiently found out. It is proved that the probability for the multivariate normal distribution is in the area within the invariable Mahalanobis distance. From the conclusion and the multivariate statistical theory, the complicated multivariate normal distribution was dramatically converted into F distribution, so the difficulty of calculating the multivariate normal distribution probability was resolved. Simulation result proved the validity and accuracy of the new method based on multivariate statistical process control (MSPC).

【基金】 国家“十五”科技攻关资助项目(2001BA204B01);国家“863”高技术研究发展计划资助项目(2001AA413020).
  • 【文献出处】 浙江大学学报(工学版) ,Journal of Zhejiang University(Engineering Science) , 编辑部邮箱 ,2005年05期
  • 【分类号】TP273
  • 【被引频次】27
  • 【下载频次】515
节点文献中: 

本文链接的文献网络图示:

本文的引文网络