节点文献
粒子群优化算法在TDOA定位中的应用
Application of particle swarm optimization to TDOA-based location
【摘要】 提出了接收端在空间随机分布时,利用粒子群优化算法解决TDOA定位估计中遇到的非线性最优化问题.针对TDOA定位方式,该算法首先初始化一个随机粒子群,然后根据适应度值更新粒子速度和位置,通过迭代搜索最佳坐标.仿真结果表明,在参数设定合理的情况下,该算法性能稳定,能找到逼近全局最优点的解,相对于其他算法精度更高.
【Abstract】 The particle swarm optimization for the nonlinear optimization in TDOA-based location is proposed in this paper.By initializing a random particle swarm,updating the velocity and position of particles in accordance with the fitness of particles,the algorithm searches the optimal coordinates through iterative searching.The experimental results show that if the parameters are assumed reasonably,the algorithm is stable and can find the global optimal solution.It has a higher accuracy than other algorithms.
- 【文献出处】 应用科技 ,Applied Science and Technology , 编辑部邮箱 ,2005年10期
- 【分类号】TN929.5;
- 【被引频次】6
- 【下载频次】304