节点文献
刚性泛函微分方程几类数值方法的测试和比较
Test and Comparison of Numerical Methods for Stiff Volterra Functional Differential Equations
【摘要】 为求解非线性刚性 Volterra 泛函微分方程推荐几类高效计算方法。通过数值试验进一步证实了李寿佛建立的泛函微分方程数值方法 B-理论及有关猜测的正确性。同时通过对数值结果进行分析和比较,详细说明了不同计算方法各自具有的特色和优势,为从事大规模刚性问题科学与工程计算的工程技术人员提供了选择计算方法的依据。
【Abstract】 Several classes of efficient numerical methods are recommended for solving nonlinear stiff Volterra functional differential equations (VFDEs), and the validity of B-theory of numerical methods for VFDEs presented by Li Shoufo[1] in 2001 is further demonstrated by a series of numerical experiments using the methods recommended above. Furthermore, the characteristic and the advantages of the methods are illuminated, respectively, by analyzing and comparing the numerical results, which provides techniques for choosing numerical methods for the large scale stiff computation which appears in various scientific and engineering practical problems.
【Key words】 functional differential equations; nonlinear stiff problems; B-theory; numerical experiments; efficient numerical methods;
- 【文献出处】 系统仿真学报 ,Acta Simulata Systematica Sinica , 编辑部邮箱 ,2005年03期
- 【分类号】O241.8
- 【被引频次】1
- 【下载频次】92