节点文献
Landau-Lifschitz铁磁方程的Hamilton理论和规范变换
The Hamiltonian theory of Landau-Lifschitz equation and the gauge transformations
【摘要】 对完全各向同性Heisenberg铁磁链的Landau-Lifschitz方程的Hamilton理论建立中 ,Hamilton量的坐标积分和谱参数积分两种表示式不能协调地从单一守恒量导出的问题 ,利用规范变换完善地解决了 .并可推广后处理非各向同性铁磁链的Landau-Lifschitz方程的Hamilton理论 .
【Abstract】 The coordinate and spectral integral representations of Hamiltonian in isotropic Landau-)Lifschitz equation are given by a standard procedure.But,the problem of deriving the corresponding conserved quantity to connect two kinds of integral mentioned above is still open.;In this paper,using the gauge invariance properties,the compatibility pair of L-)L equation is transformed to the form-i kσ 3+O (1) by choosing an appropriate transformation.Hence,the conserved quantities are obtained.The zeroth conserved quantity, I 0,is zero.The first one, I 1 ,which has coordinate and spectral integral representations,coincide with the two desired integral representations of the Hamiltonian.
【Key words】 gauge transformation; Landau-Lifschitz equation; conserved quantity; Hamiltonian theory;
- 【文献出处】 物理学报 ,Acta Physica Sinica , 编辑部邮箱 ,2005年05期
- 【分类号】O411.1
- 【被引频次】1
- 【下载频次】120