节点文献

基于BPNN的陶瓷材料抗弯强度预测

Prediction of Ceramics’ Flexural Strength Based on BP Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘立红孙德明张长强刘玉婷许崇海鹿晓阳

【Author】 Liu Lihong1,Sun Deming1,Zhang Changqiang2,Liu Yuting3,Xu Chonghai3,Lu Xiaoyang1(1 Shandong Institute of Architecture and Engineering,Jinan,250014)(2 Langchao Group Co. ltd,Jinan,250014)(3 Shandong Institute of Light Industry,Jinan,250100)

【机构】 山东建筑工程学院浪潮集团有限公司山东轻工业学院山东建筑工程学院 济南250014济南250014济南250100济南250014

【摘要】 误差反向传播神经网络具有能够正确逼近非线性映射关系的优点,将其运用到复相结构陶瓷材料抗弯强度预测当中,克服了陶瓷材料研究中单因素实验法不能正确反映抗弯强度与添加组分多因素之间复杂的非线性关系的弱点,通过抗弯强度预测和试验验证,该方法可行有效,为快捷、经济地开发研制新的陶瓷材料提供新的思路和有效手段。

【Abstract】 A flexural strength toughness predicting system of advanced ceramic composites based on BP neural network was developed, which can precisely predict the relationship between material composition and the flexural strength through self-training with the present data, and can perfectly aid the ceramic materials design. This system has friendly interfaces, extensive application, good operating feasibility and reliability examined with the present Al2O3/SiC/(W,Ti)C ceramics

【基金】 国家自然科学基金 (50 4 0 50 4 7);山东省优秀中青年科学家科研奖励基金 (2 0 0 0 - 4 9)资助项目
  • 【分类号】TQ174.1
  • 【下载频次】56
节点文献中: 

本文链接的文献网络图示:

本文的引文网络