节点文献

半线性奇系数临界双调和方程的Dirichlet问题

On the Dirichlet Problem of Semilinear Singular-critical Biharmonic Equations

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 熊辉沈尧天

【Author】 Xiong Hui(Department of Mathematics, University of Science and Technology of China, Hefei 230026)(Department of Mathematics, University of Technology of Dongguan, Dongguan 523106)Shen Yaotian(Department of Applied Mathematics, South China University of Technology, Guangzhou 510640)

【机构】 中国科学技术大学数学系,华南理工大学应用数学系 合肥230026东莞理工学院数学教研室东莞523106,广州510640

【摘要】 主要探讨了两类半线性双调和Dirichlet问题:奇系数次临界问题和临界但带较弱奇性问题,得出了在临界维数和正常维数不同情况下都至少有一个正解的结论.同时也研究了临界维数的消失问题,比较了奇系数与较弱奇性不同情况下临界维数的变化,得出奇性越大临界维数越少的结论.

【Abstract】 In this paper, the authors mainly study two semilinear biharmonic problems: singular-subcritical and critical with lower singularity. The existence of "at least" a positive solution is obtained whether the dimensions are critical or not. In the meanwhile, the authors study the problem of the critical dimensions′ disappearing and compare the change of them between higher singularity and lower singularity, and so the authors get the result, the higher the singularity, the less the critical dimensions.

【基金】 国家自然科学基金(10171032,10071080,10101024)资助
  • 【文献出处】 数学物理学报 ,Acta Mathematiea Scientia , 编辑部邮箱 ,2005年03期
  • 【分类号】O175.2
  • 【被引频次】10
  • 【下载频次】79
节点文献中: 

本文链接的文献网络图示:

本文的引文网络