节点文献

处理带约束的多目标优化进化算法

Constrained multi-objective optimization evolutionary algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王跃宣刘连臣牟盛静吴澄

【Author】 WANG Yuexuan~1, LIU Lianchen~1, MU Shengjing~2, WU Cheng~1(1. CIMS Engineering Research Center, Department of Automation, Tsinghua University, Beijing 100084, China; 2. Institute of High Performance Computing, Singapore 117528)

【机构】 清华大学自动化系国家工程技术研究中心高性能计算研究所清华大学自动化系国家工程技术研究中心 北京100084北京100084新加坡117528北京100084

【摘要】 针对当前对求解多目标优化的遗传算法中主要考虑如何处理相互冲突的多个目标间的优化,而很少考虑对约束条件的处理的问题,提出一种求解带约束的多目标优化遗传算法,利用邻域比较与存档操作遗传算法处理多个相互冲突的目标之间的优化、利用不可行度选择操作处理约束条件和选用约束主导原理指导进化过程选择操作;面向多目标约束优化算法,列举了2个难点典型问题进行仿真计算研究,仿真结果表明该算法能较大概率地获得多目标约束优化问题的可行Pareto最优解。

【Abstract】 Genetic algorithms for constrained multi-objective optimization problems mainly focus on optimizing the conflicting multiple objectives without considering the constraint conditions. This paper describes a genetic algorithm which uses neighborhood comparisons and archiving in the genetic algorithm to smooth the conflicting objectives. Infeasibility degree selection is used to handle the constraints with the constraint domain principle applied to guide the evolutionary process. Two classic difficult problems constrained multi-objective optimization were analyzed by the algorithm to show that the method can find feasible Pareto solutions with a large probability.

【基金】 国家"九七三"基础研究基金项目(2002CB312202)
  • 【文献出处】 清华大学学报(自然科学版) ,Journal of Tsinghua University(Science and Technology) , 编辑部邮箱 ,2005年01期
  • 【分类号】TP202.7
  • 【被引频次】137
  • 【下载频次】2350
节点文献中: 

本文链接的文献网络图示:

本文的引文网络