节点文献

基于时序-神经网络的车辆变速器齿轮故障诊断

Fault Diagnosis of Vehicle Transmission Gear Based on Time Series Analysis and Neural Networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 尹安东羊拯民

【Author】 Yin Andong & Yang Zhengmin School of Mechanical and Automobile Engineering,Hefei University of Technology,Hefei 230009

【机构】 合肥工业大学机械与汽车工程学院合肥工业大学机械与汽车工程学院 合肥230009合肥230009

【摘要】 采用时序分析和BP神经网络,建立了基于时序-神经网络的车辆变速器齿轮故障诊断系统。通过对车辆变速器齿轮运行状态特征信号进行时序分析和特征向量提取,并以此作为BP神经网络的输入向量进行网络训练,从而实现变速器齿轮运行状态的识别与故障诊断。该系统应用于LC5T81变速器齿轮的故障诊断中,能够比较准确地识别与诊断出变速器齿轮的跑合运行状态、磨损运行状态和故障运行状态。验证表明该诊断系统有效、可行。

【Abstract】 Based on time series analysis and BP neural networks, a fault diagnosis system is built for vehicle transmission gears. By time series analysis and eigenvectors extraction on operation status signals of transmission gears, which are taken as inputs for neural network training, the operation status identification and fault diagnosis for transmission gears are realized. In a fault diagnosis on the gears of a real transmission, the system can accurately identify the operation status (running in, worn or fault). The result shows that the system is effective and feasible.

  • 【文献出处】 汽车工程 ,Automotive Engineering , 编辑部邮箱 ,2005年04期
  • 【分类号】U472
  • 【被引频次】13
  • 【下载频次】234
节点文献中: 

本文链接的文献网络图示:

本文的引文网络