节点文献

基于正交设计的多目标演化算法

A Multi-Objective Evolutionary Algorithm Based on Orthogonal Design

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 曾三友魏巍康立山姚书振

【Author】 ZENG San-You 1),2) WEI Wei 3) KANG Li-Shan 2),3) YAO Shu-Zhen 2) 1) (Department of Computer Science and Technology, Zhuzhou Institute of Technology, Zhuzhou 412008) 2) (Department of Computer Science and Technology, China University of GeoSciences, Wuhan 430074) 3) (State Key Laboratory of Software Engineering,Wuhan University, Wuhan 430072)

【机构】 株洲工学院计算机科学与技术系武汉大学软件工程国家重点实验室中国地质大学计算机科学与技术系中国地质大学计算机科学与技术系 株洲412008 中国地质大学计算机科学与技术系武汉430074武汉430072武汉430074 武汉大学软件工程国家重点实验室武汉430072武汉430074

【摘要】 提出一种基于正交设计的多目标演化算法以求解多目标优化问题(MOPs).它的特点在于:(1)用基于正交数组的均匀搜索代替经典EA的随机性搜索,既保证了解分布的均匀性,又保证了收敛的快速性;(2)用统计优化方法繁殖后代,不仅提高了解的精度,而且加快了收敛速度;(3)实验结果表明,对于双目标的MOPs,新算法在解集分布的均匀性、多样性与解精确性及算法收敛速度等方面均优于SPEA;(4)用于求解一个带约束多目标优化工程设计问题,它得到了最好的结果———Pareto最优解,在此之前,此问题的Pareto最优解是未知的.

【Abstract】 A multi-objective evolutionary algorithm (MOEA), called orthogonal multi-objective evolutionary algorithm (OMOEA), is proposed in this paper. The idea of OMOEA is that an original niche (decision space) evolves first, and splits into a group of subniches according to the output niche-population of the evolution; then every subniche iterates the above operations so as to enhance the precision of the solutions. The main component of the new technique is the niche evolution procedure which uses a generalized design method for MOPs to locate a non-dominated set like the orthogonal design and uses the statistical optimal method for SOPs to locate optimal solution. Employed orthogonal design method and statistical method, the OMOEA can converge fast and yield evenly distributed solutions with high precision. The numerical results show that above algorithm performs better than SPEA and other MOEAs for MOPs with two objectives. For an engineering MOP with five objectives and seven constraints, the new technique finds the precise Pareto-optimal solutions which is unknown before.

【基金】 国家自然科学基金(60473037,60483081,60275034,60204001,60133010);中国博士后科学基金(2003034505)资助.~~
  • 【文献出处】 计算机学报 ,Chinese Journal of Computers , 编辑部邮箱 ,2005年07期
  • 【分类号】TP301
  • 【被引频次】102
  • 【下载频次】1299
节点文献中: 

本文链接的文献网络图示:

本文的引文网络