节点文献
微阵列数据中一种改进Bagging决策树算法的研究
On an Improved Bagging Decision Tree Algorithm in Microarray Data
【摘要】 针对基因微阵列数据具有高维度、小样本等独特的特点,本文研究并实现了旨在降低计算时间和提高精确度的Bagging决策树。本文提出了一个能极大地降低计算时间、同时对精确度影响不大的属性离散化过程,接着以一种新的类分布置信度的方式构造决策树,该方法在最终的Bagging组合方面有一定的优势。结合上述方法的Bagging决策树算法在基因微阵列数据集分类上取得了良好的效果。
【Abstract】 Based on the characteristics of high dimension and small sample, this paper investigates the improvements of bagging decision trees which aim mainly at improving computation time and accuracy. A discretization procedure is proposed, resulting in a dramatic speedup without significant decrease in accuracy. Then a new class distribution confidence is suggested improving the accuracy of the final bagging decision tree. Combining these improvements makes it get excellent performance on gene microarray data.
【关键词】 Bagging决策树;
基因微阵列数据;
类分布置信度;
中值离散化;
【Key words】 Bagging decision tree; gene microarray data; class distribution confidence; median discretization;
【Key words】 Bagging decision tree; gene microarray data; class distribution confidence; median discretization;
【基金】 国家“十五”重大科技专项课题(2001BA102A06 11)
- 【文献出处】 计算机工程与科学 ,Computer Engineering & Science , 编辑部邮箱 ,2005年06期
- 【分类号】TP18
- 【被引频次】2
- 【下载频次】150