节点文献

决策树剪枝算法的研究与改进

Research and Improvement of Decision Tree’s Prune Algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李道国苗夺谦俞冰

【Author】 LI Daoguo, MIAO Duoqian, YU Bin (Department of Computer Science and Technology , Tongji University , Shanghai 200331)

【机构】 同济大学计算机科学与工程系同济大学计算机科学与工程系 上海200331上海200331上海200331

【摘要】 Failure-node prune(FNP)剪枝算法是在深入分析和研究人工智能机器学习中ID3算法的基础上,提出的一种新的剪枝算法。通过采用CMU的4个具有典型特征的数据库对ID3算法、Expected-error prune剪枝算法和Failure-node prune剪枝算法进行实验对比分析,结果表明,Failure-node prune剪枝算法对于不完整的、不确定的、规模大的数据集有更好的剪枝效果,具有一定的应用价值。

【Abstract】 This paper studies the exist prune algorithms of decision tree in machine learning of artificial intelligence, and proposes a new prune algorithm—failure-node prune algorithm. Usually, when a decision tree is pruned, the number of the tree’s nodes will decrease and the correctness will also be cut down. The failure-node prune algorithm proposed in this paper can increase the correctness while the number of the tree’s nodes is decreased when the data sets are quite deficient. Four typical databases obtained from CMU are used to do the experiments on the ID3 algorithm, the expected-error prune algorithm and the failure-node prune algorithm. In the experiments, it divides a data set into three parts, used two of them to form the training set and the third part as the testing set. The results of the experiments suggest the failure-node prune algorithm has a quite good pruning effect.

  • 【文献出处】 计算机工程 ,Computer Engineering , 编辑部邮箱 ,2005年08期
  • 【分类号】TP18
  • 【被引频次】129
  • 【下载频次】1455
节点文献中: 

本文链接的文献网络图示:

本文的引文网络