节点文献

MLSVM4——一种多乘子协同优化的SVM快速学习算法

MLSVM4—An SVM Fast Training Algorithm Based on Multi-Lagrange Multiplier

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 业宁孙瑞祥董逸生

【Author】 Ye Ning~1, Sun Ruixiang~2, and Dong Yisheng~1~1(Department of Computer Science and Engineering, Southeast University, Nanjing 210096)~2(Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080)

【机构】 东南大学计算机科学与工程系中国科学院计算技术研究所东南大学计算机科学与工程系 南京210096北京100080南京210096

【摘要】 贯序最小优化(SMO)算法是解决大数据集支持向量机学习问题的一种有效方法,但SMO选择工作集的策略是选择数据集中最违背KKT条件的两个样本,而且还使用了随机函数,使得优化过程具有很大的随机性,影响了学习效率.在多拉格朗日乘子协同优化的通用公式基础上,吸收了Keerthi所提出的SMO修改算法中双阈值的优点,给出了乘子数为4时的一个算法MLSVM4,由于能更加精确地确定待优化样本的拉格朗日乘子值,使得学习收敛速度大大提高,特别是在使用线性核的场合下效果更加明显,在Adult、Web、手写体数字数据集上的实验结果表明,MLSVM4算法速度超过了SMO算法3到42倍.

【Abstract】 Sequential minimal optimization (SMO), as a popular effective approach to train the support vector machine for large data set has some drawbacks. Since during every iteration it selects the two samples violating KKT conditions most with the help of random function to train support vector machine, the randomness makes it unable to converge steadily. Based on the new analytical method proposed before, the which incorporates multiple Lagrange multipliers to optimize support vector machine, a new algorithm MLSVM4 with multiplier 4 is proposed without the help of random function. Because it can more accurately select the samples used during the iteration, it can converge much faster than the other methods proposed before, especially in the case of support vector machine with linear kernel. Experiment on a large range of standard data sets, such as Adult, Web and handwriting digital data, shows that MLSVM4 performs better with the factor of 3 to 42 times than SMO methods.

【关键词】 SVM快速学习算法拉格朗日乘子
【Key words】 SVMfast training algorithmLagrange multipliers
【基金】 国家自然科学基金项目(30271048);南京林业大学引进(留学)人才基金项目(G200228);南京林业大学科研基金重点课题基金项目(X020701(Z))~~
  • 【文献出处】 计算机研究与发展 ,Journal of Computer Research and Development , 编辑部邮箱 ,2005年09期
  • 【分类号】TP181
  • 【被引频次】8
  • 【下载频次】236
节点文献中: 

本文链接的文献网络图示:

本文的引文网络