节点文献
基于奇异值分解的曲面最佳适配的不确定度分析
Uncertainty analysis of best fit evaluation for freeform surface based on SVD
【摘要】 采用建立数学模型的方法,提出一种曲面最佳适配的不确定度模型.为了确定曲面误差与不确定度参数之间的关系,推导了曲面最佳适配的灵敏度矩阵.采用矩阵的奇异值分解原理,对曲面最佳适配的灵敏度矩阵进行分解,得到不确定度参数与测点随机误差的关系表达式.根据分析结果得知,每一个不确定度参数是测点随机误差的线性组合.
【Abstract】 An uncertainty model of best fit of surface was presented by using mathematically modeling method. In order to investigate the relationship between the surface geometric errors and the uncertainty parameters, the sensitivity matrix was deduced. The sensitivity matrix was then decomposed by singular value decomposition (SVD) method, and the relationship between the surface geometric errors and the uncertainty parameters was formulated. From the formula, it can be inferred that each uncertainty parameter is a linear combination of the random errors at the measurement points.
【Key words】 freeform surface; singular value decomposition; geometric best fit; uncertainty;
- 【文献出处】 华中科技大学学报(自然科学版) ,Journal of Huazhong University of Science and Technology , 编辑部邮箱 ,2005年09期
- 【分类号】TB11
- 【被引频次】9
- 【下载频次】140