节点文献
基于GRNN的多故障自适应电力系统故障诊断
Adaptive Multi-Fault Diagnosis of Power System Based on GRNN
【摘要】 为了实现快速而准确的电网故障诊断,利用广义回归神经网络(GRNN)在逼近能力、分类能力和学习速度方面的优势,建立了基于GRNN的电网故障诊断模型.仿真分析表明:在输入信息因干扰而畸变的情况下,文中所构造的模型能够快速、正确地实现电网的故障诊断;在电网拓扑结构改变的情况下,该模型也具有良好的自适应能力.
【Abstract】 In order to realize fast and correct fault diagnosis in electric network,this paper presents a novel fault diagnosis model employing the abilities of GRNN(General Regression Neural Network) in approximation,classification and learning.Simulated results demonstrate that the proposed model not only can make fast and accurate diagnoses with good fault-tolerance performance,but also possesses excellent self-adaptive ability for various topological structures of electric network.
【关键词】 电力系统;
故障诊断;
广义回归神经网络;
自适应能力;
【Key words】 power system; fault diagnosis; general regression neural network; self-adaptive ability;
【Key words】 power system; fault diagnosis; general regression neural network; self-adaptive ability;
【基金】 国家自然科学基金资助项目(50477029)
- 【文献出处】 华南理工大学学报(自然科学版) ,Journal of South China University of Technology(Natural Science) , 编辑部邮箱 ,2005年09期
- 【分类号】TM711
- 【被引频次】69
- 【下载频次】520