节点文献

重力热管振荡传热特性RBF神经网络动态建模

Dynamical model of RBF neural network-based prediction for heat transfer oscillating behavior of thermosyphon

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈彦泽丁信伟喻建良

【Author】 CHEN Yanze~ 1,2 ,DING Xinwei~1,YU Jianliang~1 (~1Institute of Chemical Engineering, Dalian University of Technology, Dalian 116012,Liaoning,China; ~2Institute of Electromechanical,China University of Petroleum, Dongying 257062,Shandong,China)

【机构】 大连理工大学化工学院大连理工大学化工学院 辽宁大连116012中国石油大学(华东)机电工程学院山东东营257062辽宁大连116012辽宁大连116012

【Abstract】 The work address the problem of modeling the dynamical oscillating behavior during both unstable and stable operations, of an experimental thermosyphon. A standard RBF artificial neural network-based prediction model was developed for predicting the oscillating heat transfer of thermosyphon by means of input-output experimental measurements with the characteristics of time series. A comparison of prediction values between the RBF network and the MLP network was giving.The precision of RBF network was higher than that of the other neural networks such as BP-MLP network etc . The dynamical model of RBF network could be used to describe, predict and control the heat transfer process of a thermosyphon or a heat pipe system.

  • 【文献出处】 化工学报 ,Journal of Chemical Industry and Engineering(China) , 编辑部邮箱 ,2005年05期
  • 【分类号】TQ021
  • 【被引频次】10
  • 【下载频次】228
节点文献中: 

本文链接的文献网络图示:

本文的引文网络