节点文献
基于模糊神经网络的变压器励磁涌流鉴别的研究
Identification of inrush based on fuzzy neural network
【摘要】 针对目前研究领域中基于神经网络的变压器励磁涌流鉴别方法存在着的误判现象,提出利用高木- 关野模糊神经网络来实现鉴别的新方案。经仿真实验表明:该方案能更准确地判别出变压器内部故障和励磁涌流,具有很高的可靠性。
【Abstract】 Aiming at the wrong identification of inrush for transformer based on the artificial neural network, a new method based on the Takaji-Sugeno fuzzy neural network is presented. Distributed network, secondary harmonic, wave symmetry extent and voltage of low voltage side are used as inputs of network. The simulation tests show that this new method can correctly identify the inrush current and internal fault of transformer.
【关键词】 励磁涌流;
内部故障;
高木-关野模糊神经网络;
【Key words】 inrush current; internal fault; Takaji-Sugeno fuzzy neural network;
【Key words】 inrush current; internal fault; Takaji-Sugeno fuzzy neural network;
- 【文献出处】 华北电力大学学报 ,Journal of North China Electric Power University , 编辑部邮箱 ,2005年04期
- 【分类号】TM410
- 【被引频次】10
- 【下载频次】113