节点文献

基于非线性PCA的微气体传感器阵列信号处理

Nonlinear PCA based micro gas sensor array signal processing

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 魏广芬唐祯安余隽陈正豪王立鼎

【Author】 WEI Guang-fen 1, TANG Zhen-an 1, YU Jun 1, CHAN Philip C H2, WANG Li-ding 1(1. Research Center for Micro Systems, Dalian University of Technology, Dalian 116024, China;2. Deptartment of Electrical and Electronic Engineering, Hong Kong University of Science and Technology,Hong Kong SAR, China)

【机构】 大连理工大学微系统中心香港科技大学电机与电子工程系大连理工大学微系统中心 大连116024大连116024香港大连116024

【摘要】 在线性叠加模型基础上提出了气体传感器对混合气体的非线性叠加模型,并引入了非线性主成分分析(NonlinearPrincipalComponentAnalysis,NLPCA)法对微传感器阵列的信号进行处理。使用该模型对由4个微热板式气体传感器组成的阵列的信号进行了分析,对照基于线性叠加模型的主成分分析法(PrincipalComponentAnalysis,PCA)的识别结果,说明该方法能够提高对混合气体识别和量化的准确度。

【Abstract】 A nonlinear superposition model was proposed based on the common linear additive model the micro gas sensor array signal processing to improve the precision of quantification and identification. According to the nonlinear model, the Nonlinear Principal Component Analysis (NLPCA) was proposed to process the response signals obtained from a 4 Micro-hotplate (MHP) based gas sensor array. Com-pared with the analyzing results obtained from Principal Component Analysis (PCA), which bases onthe linear additive model, the accuracy of gas component identification and concentration quantification are improved greatly.

【基金】 国家自然科学基金(59995550-5;90207003);S863(2003AA404180);香港RGC HKUST6065/99E;HIA98/99EG06
  • 【文献出处】 功能材料与器件学报 ,Journal of Functional Materials and Devices , 编辑部邮箱 ,2005年01期
  • 【分类号】TP212
  • 【被引频次】7
  • 【下载频次】313
节点文献中: 

本文链接的文献网络图示:

本文的引文网络