节点文献
离散微分代数系统的有界性及周期解的存在性
Boundary and Existence of Periodic Solution to Discrete Differential Algebraic Systems
【摘要】 研究离散微分代数系统的解的有界性,得出若一个具有周期性质的离散微分代数系统的解是最终有界的,则必存在周期解.利用广义Lyapunov函数研究一类离散微分代数大系统,给出了其存在周期解的充分条件.
【Abstract】 From the study on the boundary of solution to discrete differential-algebraic systems,it is concluded that if the solution to discrete differential-algebraic system periodically is ultimately bounded,there must be a periodic solution to the system.When Lyapunov function is employed to study a class of discrete differential-algebraic system, the sufficient condition is found in the periodic solution to the discrete differential-algebraic system provided.
【关键词】 微分代数系统;
周期解;
有界性;
【Key words】 discrete differential-algebraic systems; periodic solution; boundary;
【Key words】 discrete differential-algebraic systems; periodic solution; boundary;
【基金】 国家自然科学基金资助项目(60064002);教育部留学回国人员科研启动基金资助项目(教外司留[2004]527);广西自然科学基金资助项目(桂科自0448001)
- 【文献出处】 桂林工学院学报 ,Journal of Guilin Institute of Technology , 编辑部邮箱 ,2005年02期
- 【分类号】O155
- 【被引频次】4
- 【下载频次】98