节点文献

顺序形态变换的图像增强算法

Algorithm of image enhancement based on order morphology transformation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 迟健男王东署杨旭徐心和

【Author】 CHI Jian-nan1, WANG Dong-shu2, YANG Xu2, XU Xin-he2 (1. Key Laboratory of Process Industry Automation, Ministry of Education, Shenyang 110004, China; 2. Institute of Artificial Intelligence and Robotics, Northeastern University, Shenyang110004, China )

【机构】 东北大学教育部暨辽宁省流程工业综合自动化重点实验室东北大学人工智能与机器人研究所东北大学人工智能与机器人研究所 辽宁沈阳110004辽宁沈阳110004辽宁沈阳110004

【摘要】 根据顺序形态变换的相关概念和性质,提出了一种新的图像增强算法。该算法通过对图像做局部加权均值滤波,得到图像增强的基值分量;采用多方位结构元素与图像边缘匹配,计算图像关于各个方位结构元素的加权均值并选取其中的最大值来确定边缘;将此最大值与基值分量之差作为增强分量来扩大图像灰度梯度的动态范围;针对图像中的高灰度区和灰度剧变区,应用图像局部均值和方差自适应调节增强系数。因此,算法在抑制图像中的高频噪声的同时,能有效提升图像中的边缘和目标。实验结果表明,增强前后图像标准差由41.1515,36.9133提高到62.0535,52.8331;图像熵由15.8463,16.8998减少到15.8156,16.8324。

【Abstract】 According to correlative conception and properties of order morphology transformation, a novel image enhancement algorithm is proposed. With this algorithm, by performing local weighted average value filtering to obtain the basic component for image enhancement and image edge matching with structural elements of different orientations, the weighted average values of structural elements of different orientations are calculated for distinguishing edge and rejecting noises. The difference between the maximum among these weighted average values and basic value is used as an enhancement value for enlarging dynamic scope of image gradient. For regions with high grey-scale level or with tensely variable grey level, the image enhancement coefficients shall be adaptively controlled based on local mean value and variance. As a result, the target and edge of image are sharpened while high frequency noises of image are restrained. Experimental results show that after image being enhanced, the standard deviation of original image increases from 41.1515 and 36.9133 to 62.0535 and 52.8331, entropy from 15.8463 and 16.8998 to 15.8156 and 16.8324 thus improving the contrast of image.

【基金】 国防预研资助项目
  • 【文献出处】 光电工程 ,Opto-electronic Engineering , 编辑部邮箱 ,2005年07期
  • 【分类号】TP391.41
  • 【被引频次】8
  • 【下载频次】186
节点文献中: 

本文链接的文献网络图示:

本文的引文网络