节点文献

Hausdorff距离下的景像特征快速匹配

Fast scene matching of image feature using Hausdorff distance

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 芮挺王金岩沈春林丁健廖明

【Author】 RUI Ting1,2, WANG Jin-yan3, SEHN Chun-lin1, DING Jian2, LIAO Ming2 (1.College of Aotumation Engineering,Nanjing University of Aeronautics & Astronautics, Nanjing 210016,China; 2. Engineering Institute of Engineering Corps, PLA Univ. of Sci.&Tech., Nanjing 210007, China;3. School of Electronics and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200030, China)

【机构】 南京航空航天大学自动化学院上海交通大学电子信息与电气工程学院解放军理工大学工程兵工程学院解放军理工大学工程兵工程学院 江苏南京210016 解放军理工大学工程兵工程学院江苏南京210007上海200030江苏南京210016江苏南京210007

【摘要】 针对灰度相关法鲁棒性差的缺点,提出一种以图像特征进行匹配的新方法。采用具有良好稳定性和旋转不变性的图像奇异值分解作为匹配特征,并根据奇异值的数值特点,采用规范化奇异值的Hausdorff距离作为特征匹配的相似性度量;通过变模板分级匹配的策略,在保证匹配精度的前提下,使匹配时间减少到约10%。在加入方差σ=35的高斯噪声,灰度变化25%的情况下对旋转变化的景像目标进行匹配实验,结果证实了本文算法的有效性和鲁棒性及快速性。

【Abstract】 Traditional scene matching method is susceptible to environmental noise. To overcome this problem, taking into account singular values’ stability and rotation-invariance a new scene matching method based on Singular Value Decomposition (SVD) is proposed. Based on singular value’s unique characteristics, it is further proposed to use Hausdorff distance as the similarity measure between images. In addition, a new coarse-to-fine hierarchical matching approach is proposed to significantly reduce the computation for 90%. The proposed algorithm is tested on various corrupted images with Gaussian noise (σ=35), intensity changes (25%) and rotation changes. Experimental results demonstrate the robustness and accuracy of the algorithm.

【基金】 航空科学基金资助(01C15001);空军装备部基础研究项目资助
  • 【文献出处】 光电工程 ,Opto-electronic Engineering , 编辑部邮箱 ,2005年06期
  • 【分类号】TP391.41
  • 【被引频次】10
  • 【下载频次】392
节点文献中: 

本文链接的文献网络图示:

本文的引文网络