节点文献
楔形基函数插值及其误差估计
Error Estimates for Interpolation with Ridge Basis Function
【摘要】 讨论二维空间中楔形基函数插值问题的可解性,构造允许向量并且利用Kriging泛函的性质给出插值问题的误差估计,而且误差只受控于数据密度和与被插函数有关的常数,并且给出了具体的例子.
【Abstract】 The solvability of the interpolation with ridge function in R~2 is introduced.To estimate the errors of interpolation,admissible vectors and "Kriging Functional"are introduced.The errors can be bounded by a term depending on the Fourier transform of the interpolated function f and a certain Kriging Functional.Examples are given in the last section.
【基金】 国家自然科学基金资助项目(19971017;10125102)
- 【文献出处】 复旦学报(自然科学版) ,Journal of Fudan University , 编辑部邮箱 ,2005年02期
- 【分类号】O174.41
- 【被引频次】11
- 【下载频次】82