节点文献
基于可调子块迭代的加速SAGE算法在PET图像重建中的应用(英文)
Accelerating SAGE algorithm in PET image reconstruction by rescaled block-iterative method
【摘要】 提出了一种可调子块迭代(RBI)方法加速空间交替广义期望最大(SAGE)算法的收敛性.新的可调子块迭代的空间交替广义期望最大算法(RBI SAGE)组合了RBI算法和SAGE算法的优点用于加速正电子发射断层(PET)图像重建.RBI SAGE将投影数据分成不连续的子块,每一次迭代仅包含一个这样的子块.在每一个子块中用SAGE算法序列更新参数.实验中,运用RBI SAGE算法与SAGE算法对PET图像进行重建.结果表明,RBI SAGE收敛性能比SAGE算法优越,且重建图像质量较高.
【Abstract】 A new method to accelerate the convergent rate of the space-alternating generalized expectation-maximization (SAGE) algorithm is proposed.The new rescaled block-iterative SAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET image reconstruction.In the new approach,the projection data is partitioned into disjoint blocks;each iteration step involves only one of these blocks.SAGE updates the parameters sequentially in each block.In experiments,the RBI-SAGE algorithm and classical SAGE algorithm are compared in the application on positron emission tomography (PET) image reconstruction.Simulation results show that RBI-SAGE has better performance than SAGE in both convergence and image quality.
【Key words】 positron emission tomography; space-alternating generalized expectation-maximization; image reconstruction; rescaled block-iterative; maximum likelihood;
- 【文献出处】 Journal of Southeast University(English Edition) ,东南大学学报(英文版) , 编辑部邮箱 ,2005年02期
- 【分类号】TP391.41
- 【被引频次】6
- 【下载频次】92