节点文献

基于最佳鉴别变换的HMM手写数字字符识别

Handwritten Character Recognition Using HMM Based on Optimal Discriminant Transformation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 芮挺沈春林丁健QiTIAN

【Author】 RUI Ting~(1),2)), SEHN Chun-lin~(1)), DING Jian~(2)), Qi TIAN~(3)) ()~(1))(College of Aotumation Engineering,Nanjing University of Aeronautics & Astronautics, Nanjing 210016) ()~(2))(Engineering Institute of Engineering Corps, PLA University of Science & Technology, Nanjing 210007) ()~(3))(Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249)

【机构】 南京航空航天大学自动化学院南京210016解放军理工大学工程兵工程学院南京210007解放军理工大学工程兵工程学院德克萨斯大学计算机科学系 南京210016圣安东尼奥TX78249

【摘要】 基于隐马尔可夫模型 (HMM)的手写字符识别方法是近年来的一个研究热点 ,针对 HMM编码稳定性和建模过程复杂的问题 ,提出了一种新方法 ,即采用统计不相关最佳鉴别变换对模式进行特征抽取和降维 ,获得最佳鉴别特征向量 ,并在此基础上对各最佳鉴别方向的投影结果进行编码 ,作为 HMM的观测值序列 ,由于统计不相关最佳鉴别变换保证了变换特征向量集类内散布最小 ,类间散布最大的条件 ,使 HMM编码的稳定性和模式的可分性得到明显改善 ,通过对美国国家邮政局 USPS手写字库的识别实验证实了该算法的准确性和鲁棒性

【Abstract】 Handwritten character recognition using the hidden Markov model (HMM) has been an active research topic for the past decade. One of the major problems, however, is that the handwritten characters may not exhibit consistent patterns due to different people’s different writing styles. To enhance HMM’s encoding stability and to reduce its modeling complexity, we propose a new approach in this paper. Specifically, we first obtain a set of uncorrelated optimal discriminant vectors by conducting feature extraction and dimension reduction using the uncorrelated Foley-Sammon transformation. Next, using a new feature space spanned by the optimal discriminant vectors, we obtain the projection coefficients of the raw data onto this new feature space. We then use these coefficients to form the observation sequence of the HMM. Because the uncorrelated Foley-Sammon transformation ensures minimum intra-class distance and maximum inter-class distance, it significantly improves HMM’s encoding stability and difference classes’ separability. In fact, the transformation allows different characters to be separable in many projection directions. To validate the accuracy and robustness of the proposed approach, we conduct experiments on the widely used US Postal Service (USPS) data set. Experiments show that the integration of the uncorrelated Foley-Sammon transformation and the HMM performs very well, achieving a recognition rate of 92%. It not only is better than regular HMM, but also is superior to the widely used nerual network based approaches.

  • 【文献出处】 中国图象图形学报 ,Journal of Image and Graphics , 编辑部邮箱 ,2004年08期
  • 【分类号】TP391.43
  • 【被引频次】17
  • 【下载频次】273
节点文献中: 

本文链接的文献网络图示:

本文的引文网络