节点文献
火电厂锅炉热效率优化调整软件的开发
Development of boiler heat efficiency optimization system
【摘要】 大型燃煤电厂锅炉热效率目前通常依靠燃烧试验调整优化,现场试验耗时费力,而且由于锅炉输入输出特性复杂,耦合性强,燃用煤种和操作条件变化较大,通过试验进行燃烧优化往往效果不佳。介绍开发的一种设计软件,它利用人工神经网络对锅炉特性建模,并采用遗传算法进行最佳运行工况寻优,可获得目前最佳的锅炉燃烧调整方式,实现锅炉的节能降耗。
【Abstract】 The heat efficiency of large size coal-fired utility boilers is usually optimized by using combustion test and adjustment, the word is heavy and time-consuming. Because the input and output characteristics of boiler are complicated, the coal rank and boiler operating conditions change often, and the coupling effect is strong, so the results of: combustion optimization through tests are not so good often. This paper introduces a kind of developed design software, which uses artificial neural network to set up a boiler property model, and employs genetic algorithm to optimize the working conditions, so as to obtain currently optimum combustion adjustment mode of boiler, with energy saved and consumption reduced.
【Key words】 utility boiler; combustion optimization; neural network; genetic algorithm;
- 【文献出处】 中国电力 ,Electric Power , 编辑部邮箱 ,2004年02期
- 【分类号】TM769
- 【被引频次】17
- 【下载频次】334