节点文献

数值流形方法中覆盖函数选用的建议

Suggestion to the choice of physical cover functions in numerical manifold method

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 彭自强葛修润

【Author】 PENG Zi-qiang1, 2, GE Xiu-run1 1.Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. The Design Institute, Wuhan University of Technology, Wuhan 430070, China

【机构】 中国科学院武汉岩土力学所中国科学院武汉岩土力学所 湖北武汉430071武汉理工大学设计研究院湖北武汉430070湖北武汉430071

【摘要】 在数值流形方法中,常用的覆盖函数基并非是最佳选择。循着刚度矩阵的形成过程,分析了选用常用覆盖函数时,在非对角元上出现绝对值很大的元素之成因,且发现这会增加刚度矩阵的条件数,尤其是在用刚性弹簧约束位移的情况下,而这在数值流形方法中普遍而基本。建议采用局部化较好的覆盖函数,取代常用的关联于全局坐标的覆盖函数,可显著消除这一情况。建议方式简单明了,程序改动极小,对改善刚度矩阵性态却有很大作用。算例验证了这一建议的合理性,通过比较局部化的覆盖函数及全局性的覆盖函数所形成的刚度矩阵,表明前者形成了较小条件数的刚度矩阵。

【Abstract】 In the numerical manifold method (NMM), the most commonly used physical cover functions are not the best choices. Along the procedure of the formation of stiffness matrix, this paper analyses the causes of the non-diagonal entries of relatively huge absolute value in stiffness matrix, when ordinary physical cover functions are used. These extremely large entries can increase the condition number of stiffness matrix to a great extent, especially when stiff spring method is used, which is very universal and basic in the NMM. This paper suggests that well-defined local physical functions, orthogonal the better, be used instead of currently used ones related to global coordinates. This choice can help to eliminate the above-mentioned phenomenon and provide a relatively well-conditioned stiffness matrix. The suggestion is straightforward to implement, causing little changes to currently used procedure, while it affords a lot to improvement of the quality of stiffness matrix. Some examples are analyzed to test the suggested cover functions. Comparisons between the stiffness matrixes based on locally- and globally-defined cover functions show that the previous ones generate better stiffness matrix in terms of condition number.

  • 【文献出处】 岩土力学 ,Rock and Soil Mechanics , 编辑部邮箱 ,2004年04期
  • 【分类号】TB115
  • 【被引频次】25
  • 【下载频次】241
节点文献中: 

本文链接的文献网络图示:

本文的引文网络