节点文献

基于投影方法的约束独立成分分析

Constrained Independent Component Analysis Based on Projection Methods

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 史振威钟明军唐焕文唐一源

【Author】 SHI Zhen-wei~1, ZHONG Ming-jun~1, TANG Huan-wen~1, TANG Yi-yuan~(2,3,4)(1.Department of Applied Mathematics, Dalian University of Technology, Dalian 116023, China; 2.Institute of Neuroinformatics, Dalian University of Technology; 3.Laboratory of Visual Information Processing, The Chinese Academcademy of Sciences)

【机构】 大连理工大学应用数学系大连理工大学神经信息学研究所 辽宁大连116023辽宁大连116023辽宁大连 1 1 6 0 2 3 中国科学院生物物理所视觉信息加工实验室北京 1 0 0 1 0 1 中国科学院心理健康重点实验室北京1 0 0 1 0 1

【摘要】 独立成分分析是解决盲源分离问题的一种有效工具,但ICA具有伸缩(dilation)与排序(permutation)的不确定性的本质特征。本文利用一些约束条件,采用Lagrange乘子法并结合简单的投影方法,可以以特定的形式来进行独立成分的排序,并且可以在信号分离过程中规范化解混矩阵(demixingmatrix),能够系统地减轻ICA对于伸缩与排序的不确定性。仿真结果证实了算法的有效性。

【Abstract】 As an important technique, independent component analysis (ICA) has been widely applied to blind source separation. But ICA has an inherent indeterminacy on dilation and permutation. In this paper, some constraints can be introduced into ICA, then projection methods and Lagrange multiplier methods are used to order the independent components in a specific manner and normalize the demixing matrix in the signal separation procedure. This can systematically eliminate the indeterminacy of ICA on permutation and dilation. The validity of the algorithms are confirmed by the experiments and results.

【基金】 国家科技部973前期专项(2001CCA00700);国家自然科学基金资助项目(90103033;30170321);教育部重大基金资助项目(KP0302)
  • 【文献出处】 运筹与管理 ,Operations Research and Management Science , 编辑部邮箱 ,2004年05期
  • 【分类号】O223
  • 【被引频次】5
  • 【下载频次】181
节点文献中: 

本文链接的文献网络图示:

本文的引文网络