节点文献

基于Volterra级数的全解耦RLS自适应辨识算法

Fully Decoupled RLS Adaptive Identification Algorithm Based on Volterra Series

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 孔祥玉韩崇昭马红光魏瑞轩

【Author】 KONG Xiang-yu1, HAN Chong-zhao1, MA Hong-guang1, WEI Rui-xuan2 (1School of Electronic and Information Engineering, Xi抋n Jiaotong University, Xi抋n 710049, China; 2School of Engineering, Air Force Engineering University, Xi抋n 710038, China)

【机构】 西安交通大学电子与信息工程学院空军工程大学工程学院 西安710049西安710049西安710038

【摘要】 针对非线性系统辨识问题,提出了一种基于Volterra级数模型的非线性系统的全解耦RLS自适应辨识算法。按照Volterra伪线性组合结构,采用RLS自适应辨识和约束优化理论,导出了具有分块对角形输入相关矩阵的全解耦Volterra标准方程,据此设计了一种基于Volterra级数模型的全解耦的RLS自适应辨识算法。该算法与部分解耦的RLS自适应算法相比,显著提高了辨识过程的收敛速度和精度。仿真结果验证了该方法的有效性。

【Abstract】 Aiming at the identification problem for the nonlinear system, a fully decoupled RLS adaptive identification algorithm for nonlinear system based on Volterra series is presented in this paper. According to the pseudo-linear combination structure of Volterra series, by applying the principle of RLS adaptive identification and constrained optimization theory, a fully decoupled Volterra normal equation with block diagonal input correlation matrix is educed. A fully decoupled RLS adaptive identification algorithm based on Volterra series is then designed. The algorithm can remarkably improve the convergence speed and precision of the identification process compared with the partially decoupled RLS adaptive identification algorithm. Simulation results indicate that the proposed method in the paper is efficient.

【基金】 国家重点基础研究发展规划(973)项目(2001CB309403);国家自然科学基金资助项目(60304004);中国博士后基金项目(2003033512)。
  • 【文献出处】 系统仿真学报 ,Acta Simulata Systematica Sinica , 编辑部邮箱 ,2004年04期
  • 【分类号】TP11
  • 【被引频次】16
  • 【下载频次】286
节点文献中: 

本文链接的文献网络图示:

本文的引文网络