节点文献
嵌入耦合量子点的介观Aharonov-Bohm环内的持续电流
The persistent current in a mesoscopic Aharonov-Bohm ring with a series-coupled double quantum dot
【摘要】 使用双杂质的Anderson模型的哈密顿量 ,从理论上研究了一个嵌入耦合量子点的介观Aharonov Bohm环系统处在Kondo区时的基态性质 ,并用slave boson平均场方法求解了哈密顿量 .结果表明 ,在这个系统中 ,宇称效应和复杂的电流 相位关系的出现反映了两个量子点可以相干耦合 .
【Abstract】 We study theoretically the properties of the ground state of a mescopic ring with a series-coupled double quantum dot in the Kondo regime by means of the two-inpurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that two dots can be coupled coherently, which is reflected in the appearance of parity effects and the complex current-phase relation in this system. This system might be a possile candidate for future device applications.
【关键词】 持续电流;
耦合量子点;
宇称效应;
Kondo效应;
【Key words】 persistent current; coupled quantum dot; parity effect; Kondo effect;
【Key words】 persistent current; coupled quantum dot; parity effect; Kondo effect;
- 【文献出处】 物理学报 ,Acta Physica Sinica , 编辑部邮箱 ,2004年07期
- 【分类号】O488
- 【被引频次】9
- 【下载频次】102