节点文献
多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支
STABILITY AND GLOBAL HOPF BIFURCATION FOR A PREDATOR-PREY MODEL WITH TWO DELAYS
【摘要】 本文首先用Cooke等人建立的关于超越函数的零点分布定理,研究了一类多时滞捕食-食饵系统正平衡点的稳定性及局部Hopf分支,在此基础上再结合吴建宏等人用等变拓扑度理论建立起的一般泛函微分方程的全局Hopf分支定理,进一步研究了该系统的全局Hopf分支.
【Abstract】 This paper considers the stability and local Hopf bifurcation for a delayed Predator-Prey model using the basic theorem on zeros of general transcendental function, which was established by Cooke etc. Furthermore, based on the global Hopf bifurcation theorem for general functional differential equations, which was established by Wu J. etc. using degree theory methods, the existence of global Hopf bifurcation is investigated.
【关键词】 时滞;
稳定性;
局部Hopf分支;
全局Hopf分支;
【Key words】 Delay; Stability; Local Hopf bifurcation; Global Hopf bifurcation;
【Key words】 Delay; Stability; Local Hopf bifurcation; Global Hopf bifurcation;
【基金】 国家自然科学基金(No.10371072)资助的项目.
- 【文献出处】 数学年刊A辑(中文版) ,Chinese Annals of Mathematics,series A , 编辑部邮箱 ,2004年06期
- 【分类号】O177.91
- 【被引频次】67
- 【下载频次】797