节点文献

m-continued Fraction Expansions of Multi-Laurent Series

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 戴宗铎王鲲鹏叶顶峰

【Author】 DAI Zong-duo WANG Kun-peng YE Ding-feng(State Key Laboratory of Information Security, Graduate School of Chinese Academy of Science, Beijing, 100039, P. R. China)

【机构】 State Key Laboratory of Information SecurityGraduate School of Chinese Academy of ScienceBeijing100039P. R. ChinaP. R. China

【摘要】 <正> The simple continued fraction expansion of a single real number gives the best solution to its rational approximation problem. A multidimensional generalization of the simple continued fraction expanding procedure is the Jacobi-Perron algorithm (JPA). This algorithm and its modifications are borrowed to study the multi-rational approximation problem over the formal Laurent series field F((z-1)), which is related to the multi-sequence synthesis problem in the field of communication and cryptography, but none of these algorithms guanrantee the best

【基金】 This work is partly supported by NSFC(No. 60173016);the National 973 Project(No.1999035804)
  • 【文献出处】 数学进展 ,Advances In Mathematics , 编辑部邮箱 ,2004年02期
  • 【分类号】TN918.1
  • 【被引频次】4
  • 【下载频次】50
节点文献中: 

本文链接的文献网络图示:

本文的引文网络