节点文献

基于小波包及隐式马尔科夫模型的局放信号去噪

Wavelet Package-Based Partial Discharge Denoising Using Hidden Markov Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张毅刚郁惟镛黄成军左问

【Author】 ZHANG Yi-gang,YU Wei-yong,HUANG Cheng-jun,ZUO Wen (Dept. of Electrical Eng., Shanghai Jiaotong Univ., Shanghai 200240, China)

【机构】 上海交通大学电气工程系上海交通大学电气工程系 上海200240上海200240上海200240

【摘要】 将基于小波变换的隐式马尔科夫模型(HMM)方法改进并扩展至小波包域,用于去除发电机局部放电信号中的白噪声.采用实测的局部放电信号验证了方法的有效性.结果表明,对比传统的门限去噪算法,基于小波包的HMM方法有更好的去噪效果;而与基于小波变换的HMM方法相比,所建立的模型更能体现信号的特征,对于信号分析乃至进一步的模式识别有着更大的价值.

【Abstract】 Wavelet-domain hidden markov models (HMMs) have recently been introduced and applied to signal and image processing. The advantage of the method is that the HMMs measure the dependency between the wavelet coefficients and have no free parameters in denoising. A wavelet-package-based HMMs method was developed to reduce partial discharge (PD) white noise. The effectiveness of the method is demonstrated by using numerical simulations and real-world data of neutral point current of generator. Compared with Shrinkage method, the results shows that the HMMs method is better in enhancing signal-to-noise radio and reserves more PD impulses.

【基金】 许继奖教金资助项目
  • 【文献出处】 上海交通大学学报 ,Journal of Shanghai Jiaotong University , 编辑部邮箱 ,2004年08期
  • 【分类号】TM855
  • 【被引频次】19
  • 【下载频次】256
节点文献中: 

本文链接的文献网络图示:

本文的引文网络