节点文献

连铸保护渣性能的人工神经网络模型预测

PREDICTION TO THE PROPERTY Of MOLD POWDER BY ARTIFICIAL NEURAL NETWORK MODEL

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 胡汉涛魏季和茅洪祥

【Author】 Hu Hantao Wei Jihe Mao Hongxiang(Shanghai University)(Wuhan Science and Technology University)

【机构】 上海大学材料科学与工程学院武汉科技大学材料与冶金学院 上海 200072上海 200072

【摘要】 分析了连铸保护渣的化学成分和物理性能,提出了预测连铸保护渣性能的神经网络模型,根据保护渣的化学成分以该模型预测其粘度。结果表明,模型估计与观测值相当吻合。并与多元线性和非线性回归模型作了比较。

【Abstract】 The relation between physical property and chemical composition of the mold powder was analyzed. An artificial neural network model was developed to predict the physical property of the mold powder, and to estimate the viscosity of the smelted mold flux by its chemical composition . The result indicated that the model prediction was in agreement with the observed value. Also the NN model was compared with the models obtained respectively by multi-linear and nonlinear regression.

  • 【分类号】TF777
  • 【被引频次】4
  • 【下载频次】114
节点文献中: 

本文链接的文献网络图示:

本文的引文网络